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Abstract Analysis of variance can be used to detect the 
linkage of segregating quantitative trait loci (QTLs) to 
molecular markers in outbred populations. Using inde- 
pendent full-sib families and assuming linkage equilib- 
rium, equations to predict the power of detection of a 
QTL are described. These equations are based on an 
hierarchical analysis of variance assuming either a com- 
pletely random model or a mixed model, in which the 
QTL effect is fixed. A simple prediction of power from 
the mean squares is used that assumes a random model 
so that in the mixed-model situation this is an approxi- 
mation. Simulation is used to illustrate the failure of the 
random model to predict mean squares and, hence, the 
power. The mixed model is shown to provide accurate 
prediction of the mean squares and, using the approxi- 
mation, of power. 

Key words Quantitative trait loci �9 Analysis of 
variance �9 Genetic linkage 

Introduction 

Analysis of variance would seem to provide a simple 
method of combining information from many families in 
order to detect linkage of a quantitative trait locus 
(QTL) to a marker. In an outbreeding population the 
same marker allele will not be associated with the same 
QTL allele in all families. Therefore, evidence for a 
linked QTL cannot be obtained at a population level 
from overall mean differences between marker geno- 
types. A linked QTL is, however, expected to produce 
mean differences between marker genotypes within fam- 
ilies. Using an hierarchical analysis of variance, the test 
for a linked QTL comes from the comparison of the 
between-marker within-families mean square with the 
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residual mean square and can be tested as an F ratio 
(Hill 1975; Soller and Genizi 1978). Following standard 
procedures (for example see Searle 1971, p. 394 ft.), 
expected values of the mean squares and hence the 
F ratio can be written in terms of the variance compo- 
nents, functions of fixed effects, and coefficients that 
depend on the number of observations. The power is the 
probability that this F ratio is greater than the critical 
value from the central F distribution with the same 
degrees of freedom. Hence, given the pedigree structure, 
it is possible to predict the power of detection of a given 
QTL (Hill 1975; Soller and Genizi 1978). Hill (1975) 
described an hierarchical model with all effects random 
for the detection of a linked QTL using a population of 
full-sib families. A simulation study illustrates that the 
random model does not provide an adequate prediction 
of the mean squares and thus of the power. Soller and 
Genizi (1978) used an alternative mixed model and in the 
present paper a more detailed description of the analysis 
of variance for this model is presented. The full-sib 
family types described by Hill (1975) are used. This 
mixed model has a random effect between families and a 
fixed effect due to the QTL linked to the marker. An 
approximation to power is obtained using equations 
suitable for a simple random model. A simulation study 
illustrates the agreement between both the predicted 
and the observed mean squares and power. 

Model 

Consider a population of full-sib families (parents plus offspring) 
where the parents mated at random. Information on a segregating 
marker is available for parents and offspring, phenotypic information 
is recorded only on the offspring. A QTL is segregating in the 
population and is assumed to be in linkage equilibrium with the 
marker. The model for the kth full-sib with marker genotype j in 
family i can be written as follows: 

y~j~ = ~ + u~ + ~* + e~k (1) 

where # is the population mean, u* is the effect of family i, 7* is the 
effect of the jth marker genotype in the ith family, and e*~ is the 
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residual effect for the kth full-sib of thejth marker genotype in the ith 
family. 

The population will consist of different types of families with 
respect to the marker genotypes of the parents. If both parents are 
homozygous at the marker the family will be completely uninform- 
ative for linkage. Informative families consist of those where one 
parent is homozygous, and those where neither parent is homo- 
zygous, for the marker. In the latter case the parents can either have 
the same genotype or, in situations where there are more than two 
alleles at the marker locus, different genotypes. The population can 
either be divided on the basis of the marker genotypes of the parents 
or analysed as a whole�9 Although in practice it would be more efficient 
to analyse informative families together, to allow comparison with 
previous work (e.g., Hill 1975) the families from different marker 
classes will be considered separately. Two types of family will be 
investigated, those where one parent is homozygous at the marker 
locus and one is heterozygous (backcross-type or BC families) and 
those where both parents are heterozygous for the same genotype at 
the marker locus (intercross-type or IC families)�9 A simple genetic 
model, with an additive QTL with two alleles at equal frequency, with 
half the difference between QTL homozygotes equal to 6, and with no 
recombination between the marker and QTL, will be considered to 
illustrate the problem�9 

Analysis of variance 

Hierarchical analysis with main and nested effect random 

As the population is assumed to be in linkage equilibrium, the data 
can be analysed as an hierarchical analysis of variance (Hill 1975), 
with variation between families, between marker genotypes within 
families, and within marker genotypes within families. Hill (1975) 
assumes all effects are random. With a constant number of full-sibs 
per family and the expected segregation ratios at the marker within 
families (i.e., with half the full-sibs in each marker class for the BC 
situation, and with one quarter of the full-sibs in each homozygous 
marker class and half in the heterozygous class for the IC), the 
analysis of variance can be written as follows (Hill 1975): 

Source df E [MS] 

Between families (N - 1) 
Between marker genotypes 
within families N(M - 1) 
Within marker genotypes 
within families N (n - M) 

2 2 M S f  cr2 q_ k2Gn q_ ncrf 

MS~ = cr~ + k~ cr~ 

M S~ = cr2 

where N is the number of families, M is the number of marker 
genotypes in each family, i.e., M = 2 for the BC and M = 3 for the IC, 

�9 . - 2 - , n is the number of full-sabs per family, cry is the between-family 
variance component which for the simple model described above is 

2 2 ' ' 2 �9 �9 equal to 6 /4 + G,  where G as the non-QTL varmnce between 
�9 , 2 . . . . . .  families, % as the between-marker-genotypes within-families variance 

component, which is equal to 62/8, and a~ is the within-marker- 
genotypes within-families variance component, which is equal to 

2 2 2 . . . .  cr~ + 6 /8, where G is the individual environmental variance compo- 
nent plus the within-full-sib family genetic variance due to genes other 
than the QTL linked to the marker. 

For all variance components the contribution due to the QTL is a 
function of p(1 - p)62, where p is the QTL allele frequency (p = 0.5 in 
this example), i.e., a function of the contribution of the QTL to the 
variance. 

With one parent heterozygous and one homozygous at the 
marker (BC families) k~ = k 2 = n/2. With both parents heterozygous 
for the same genotype at the marker (IC families) k I = 5n/16 and 
k 2 = 3n/8. 

In both cases the test for evidence of linkage comes from the ratio 
of the 'between-marker-genotypes within-families' mean square and 
the 'within-marker-genotypes within-families' mean square. 

Hierarchical analysis with the QTL effect fixed 

The analysis of Hill (1975) assumes all effects are random; however, it 
is generally assumed that the effects of the QTL genotypes are the 
same in all families and, hence, should be considered as fixed. This 
alternative model for the data can be written as follows: 

YUk = t 1 q- Ui -[- q~ + 7~S + e~Sk + eijk (2) 

The family component u* in (1) is now composed of a random 
. . . .  2 component (u,, distributed with variance G) and a fixed component 

due to the QTL (qi). Likewise the residual (e'k) in (1) is composed of 
both a random component (eqk, with variance cr2) and a fixed compo- 
nent due to the QTL (eijk). 7~S is the fixed effect of the jth marker 
genotype in the ith family. 

For a QTL with two alleles there are 16 different combinations of 
QTL genotypes for the parents taking account of the origin of the 
QTL. For each family type the expected value of q~, 7~s and ~Sk can be 
written in terms of the effect of the QTL. The expected mean QTL 
effect of the family relative to the QTL mid-homozygote value is q~. 
The expected deviation of each marker genotype from the expected 
family mean is 7is. The expected deviation of each QTL genotype from 
the expected marker genotype mean is ~jk' For example, consider a 
BC family with the additive QTL described previously. If both 
parents are heterozygous at the QTL (e.g., with parental genotypes 
aq/AQ and Aq/A(2) there are four possible offspring genotypes ex- 
pected at equal frequency 

AQ AQ aq aq 
Genotype: 

AQ Aq AQ Aq 

Effect: c5 0 0 -- 

q i = 0  

6 
~ i l  = -  ] ) i 2  = - - -  

2 2 

Z 

For given QTL genotypes of the parents, qi and y~j are known 
precisely for each full-sib. The value of eis k, however, is not always 
known as it depends on the QTL genotype of the individual which, in 
some circumstances with this model, can be one of two alternatives. 
Hence, the mean effect due to the QTL of the marker genotypes 
within families is not fixed but will depend on the random sampling of 
the possible QTL genotypes. That is, it is the effect of the QTL and not 
the marker that is fixed and, therefore, even in the absence of any 

�9 �9 2 , resadual random variance (G = 0), unlike the usual fixed-effect 
models, the residual mean square ('within-marker-genotypes within- 
families') will not be zero. 

Derivation of expected mean squares 

Following Searle (1971, 394 ft.) the equations for the mean squares can 
be written in terms of the components of model (2) rather than the 
phenotypes. The expectation of these equations can be simplified to 
obtain expressions for the mean squares composed of the variance 
components and functions of the fixed effects. 

The usual assumptions were made about the random effects, that 
is: 

E[eqk]=O E[euk2 ] = ae2 E[eljk, eljk,~k]=O 

Extensions to the standard models presented by Searle (1971) are 
required to account for the random segregation of the QTL within the 
marker class and random sampling of the parents with respect to their 
QTL genotype. First, QTL segregation within the offspring marker 
class will be considered. Depending on the QTL genotype of the 
parents, with the model presented here there may be either one or two 
possible QTL genotypes for fn11-sibs with the same marker genotype. 
When two QTL genotypes are possible an offspring can be either 



320 

genotype with equal probability. The number of full-sibs with each 
QTL genotype within the marker genotype is therefore binomially 
distributed with a probability of one half. The expectation of the 
square of the numbers of offspring in the two QTL classes within a 
marker genotype within a family (i.e., E In1 n 1 ], E [nl n23 and E [n 2 n2] 
where n~ is the number of full-sibs with one QTL genotype within a 
marker class and n 2 the number of the second QTL genotype) is 
required to derive the mean squares and this expectation involves the 
variance and covariance of the numbers in each class {i.e., 
E[n~n~] = E[nl]E[nl] + var(nl) and E[n~n2] = E[nl] E[n2] + 
coy (n 1 n2), as n 1 and n z are biuomially distributed with n 1 + n 2 = n,, 
(the number of full-sibs in a marker class) and Pl = P2 = 0.5 (the 
probability of each QTL genotype within a marker genotype), 
E[n~] = nmpl, var(nl)=nmpl(1-- pl) and cov(nln2)= -n, ,p lp2 }. 
The covariance of the number of offspring with a given QTL genotype 
in different marker genotype classes is zero. 

Secondly, the effect of random sampling of parents with respect to 
the QTL will be considered. Families contribute different amounts to 
the 'between-marker within-family' mean square and to the 'within- 
marker within-family' mean square depending on the QTL genotypes 
of the parents. Terms have to be accumulated over all family types in 
proportion to their expected frequency in the population. Assuming 
random mating, the expected frequency of each of the 16 types of 
family can be obtained simply from the QTL allele frequency. With 
two QTL alleles at equal frequency, all family types have the same 
expected frequency of 1/16. The 'between-family' mean square in- 
volves the expectation of the square of the numbers of each family 
type. The number of families of each type is multinomially distributed. 
The expected square of the numbers can be obtained in the same way 
as for the numbers of offspring in each QTL genotype within markers, 
where the binomial distribution was used [-i.e., n~ would be the total 
number of families (N) and p v . .  P~ 6, the frequency of each family type, 
would depend on the QTL allele frequency]. 

Incorporating the values described above into the equations 
for the expected mean squares and simplifying them gives the follow- 
ing: 

One parent heterozygous and one homozygous at the marker (BC 
families): 

Source E [MS] 

2 ~2 62 2 
Between families 0-e + ~- + n2- + na, 

2 02 6 a 
Between marker genotypes within families 0-e + g + ng 

2 62 Within marker genotypes within families ae + T 

Both parents heterozygous for the same genotype at the marker (IC 
families): 

Source E[MS] 

g~ 6 ~ 2 Between families 0-~ + X + n~ + na~ 
Between marker genotypes within families 0-~ + ~ + (M~ t)Os ~ 

( n -  2) ~2 Within marker genotypes within families a~ + (.-M)Y 

Prediction of power 

For a balanced random model assuming normally-distributed ran- 
dom effects, power can be predicted from a central F distribution 
using the following relationship (e.g., Scheff6 1959, p. 227): 

Prob(T> Fo)= Prob(F  > ~ )  

Where T is the test variable (F ratio) appropriate for the test with n 1 
and n 2 degrees of freedom, F o is the critical value (e.g., 5 % level) from 
a central F distribution with the same degrees of freedom, F is a 
central F variable, again with n 1 and n 2 degrees of freedom, and G is a 
function of the parameters such that T =  FG. For a simple balanced 
random model, G is equal to the value of the F ratio calculated using 
the true parameter values. 

An approximation to power was obtained for the situations 
considered here using the equation given above replacing G with the 
expected value of the F ratio. This is no longer exact as the data are 
unbalanced and the model not random and, hence, T # FG as the 
mean squares are no longer distributed as chi-square variables. 

Simulation study 

In order to check the predicted mean squares given above, data were 
simulated containing independent full-sib families. A marker locus 
and a single QTL with additive effect and two alleles at equal fre- 
quency were segregating with no recombination between the marker 
and the QTL. The parental generation was in linkage equilibrium. 
There was no environmental variance, no genetic variance other than 
that generated by the QTL or any additional common family compo- 
nent (i.e., 0 -2 = 0 and aa = 0). In one set of 1000 simulations one parent 
of each fal~ily was ho~nozygous at the marker and the other hetero- 
zygous (BC families) and in the other set both parents were hetero- 
zygous for the same marker genotype (IC families). 

Data were also simulated in order to see whether the predicted 
power was in good agreement with that observed over multiple 
simulations. The data were similar to those described above except 
that a random environmental component was also included and in 
some sets a random component common to families. Power was 
predicted as for a balanced random design, using the equation given 
previously. One-thousand replicate data sets for each family type 
were simulated and analysed. 

The ratio of the 'between-marker-genotypes within-families' and 
the 'within-marker-genotypes within-families' mean squares for the 
two different models can be written as follows: 

Random model (Hill 1975) Mixed model 

BC 

IC 

n6 z n6 z 
1 -r 2(80-~ + 62) 1 + 80-~ z + 62 

1 + 5ncSZ n 2 - 4n + 1_62 
16(80- 2 + 02) n -- 3 

1+ 
/ 2 n - 2  2 \ 2t,80-e 9 ) 

Results 

The averages of the mean squares over the 1 000 repli- 
cates were calculated and are shown in Table 1 with the 
values that would be predicted with the two models 
described above and the parameter values used to simu- 
late the data. The predicted mean squares from the 
random model do not agree with the val-ues observed in 
the simulation study, with the 'between-family' mean 
square over estimated and the 'between-marker within- 
family' mean square underestimated. For the IC situ- 
ation the residual mean square is also very different from 
expected. In both cases the predicted F ratio is lower 
than that observed, which would lead to the predicted 
power being an underestimate. The predicted mean 
squares from the mixed model, however, are in agree- 
ment with the simulated values and would give an 
unbiased prediction of the F ratio. 

Table 2 gives the observed mean F ratios and power 
(defined as the percentage of significant analyses) and 
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Table 1 Observed mean squares (with empirical standard error in 
parentheses) compared with predicted values from an analysis of 
variance. One-thousand replicate simulations were carried out with 
N families each with n full-sibs and the expected number of full-sibs 
per marker class within families. Sets of families where either one 
parent was homozygous and one heterozygous at the marker locus 

(BC families), or where bothwere heterozygous for the same geno- 
type (IC families), were simulated. An additive gene was simulated 
with two alleles at equal frequency and effect c5 (half the QTL 
homozygote difference). There was no recombination between the 
marker and the QTL. Variation between individuals was due to the 
QTL only 

Marker type N n c52 Simulated" Predicted :random Predicted :mixed 

MS~ M S  m M S  r M ~  MS, ,  M S  r MSf M S ~  M S  r 

BC 64 40 200 2 029 1022 25.02 2 525 525.0 25.0 2 025 1025 25.00 
(9.84) (4.15) (0.10) 

IC 64 40 200 2024 513.2 25.84 2400 337.5 25.0 2025 512.5 25.68 
(9.78) (2.42) (0.13) 

BC 32 20 100 509.9 263.9 12.44 637.5 137.5 12.5 512.5 262.5 12.50 
(3.55) (1.52) (0.07) 

IC 32 20 100 511.0 130.9 13.30 606.3 90.6 12.5 512.5 131.3 13.24 
(3.66) (0.85) (0.09) 

a M S y  is the between-family mean square; MS, .  is the between-marker within-family mean square; M S  r is the within-marker within-family 
mean square 

Table 2 Observed power and F-ratios and those predicted using the 
mixed model. One-thousand replicate simulations were carried out 
with N families each with n full-sibs and the expected number of 
full-sibs per marker class within families. Sets of families where either 
one parent was homozygous and one heterozygous at the marker 
locus (BC families), or where both were heterozygous for the same 
genotype (IC families), were simulated. An additive gene was 
simulated with two alleles at equal frequency. There was no recom- 
bination between the marker and the QTL 

Marker N n 2 a d 4 Observed Predicted 
type 

F Power F Power 

BC 25 40 0.05 0.32 0.0 1 .51  44.6 1.49 44.2 
IC 25 40 0.05 0.32 0.0 1 .25  30.0 1.24 29.7 
BC 25 40 0.05 0.22 1.0 1.49 41.7 1.49 44.2 
IC 25 40 0.05 0.22 1.0 1 .23  29.0 1.24 29.7 

BC 50 20 0.10 0.45 0.0 1.50 66.0 1.49 63.8 
IC 50 20 0.10 0.45 0.0 1 .23  40.6 1.23 41.5 
BC 50 20 0.10 0.32 1.0 1.49 63.4 1.49 63.8 
IC 50 20 0.10 0.32 1.0 1 .23  39.8 1.23 41.5 

a 2 and q5 are the expected population QTL variance (calculated from 
the simulated parameter values, i.e., 82/2, where 8 is half the QTL 
homozygote difference) and the between-family variance component 
(a 2) used to simulate the data as a proportion of the individual 
environmental variance (a2), respectively (i.e., 2 = 6 2 / 2 a  2 and 
~9 = a~/a~), d is the additive effect of the QTL in residual standard 
deviations [i.e., 8 = d(cre 2 + a~) 2 ] 

those predicted from the mixed model for a range of 
situations. It can be seen that the predicted power 
provides a good indication of the observed power, des- 
pite using a method which is only expected to provide an 
approximate result. 

Extensions to more general prediction formulae 

The most basic situation has been assumed in order to 
illustrate the failure of the random model presented by 
Hill (1975) to explain the data and to describe a more 
suitable mixed model. A more general model could 

account for recombination between the QTL and the 
marker or allow for random segregation of the marker 
alleles within families or unequal family size. In addi- 
tion, the molecular markers now being used frequently 
have more than two alleles at a locus. This creates an 
additional family type with respect to the markers; that 
is, one where all four marker genotypes can be distin- 
guished in the offspring. The expected mean squares 
obtained assuming a mixed model can be extended to 
incorporate these effects but this requires more labori- 
ous algebra. 

It would also be useful to consider using information 
from the whole population rather than subsets of it (i.e., 
combining IC, BC and any other informative family 
types). As the F ratio of interest does not depend on the 
'between-family' mean square, the F ratio for whole 
populations of mixed family types can be obtained 
simply by calculating the mean expected within- and 
between-marker within-families sums of squares using 
the expected frequencies of the different family marker 
types. These can be divided by the expected degrees of 
freedom to obtain an expression for the relevant mean 
square. 

Discussion 

The mixed model presented here provides a useful pre- 
diction of the power of a given situation using analysis of 
variance. This is despite the fact that families are hetero- 
geneous with respect to the QTL, and therefore also for 
the within-family variance, so that the assumptions 
underlying the use of analysis of variance are not strictly 
correct. The power predicted would be higher than that 
suggested by the equations given by Hill (1975). 

The equations for the mean squares, and hence 
power, depend on the QTL allele frequency which will 
be unknown in practice. In the example given in this 
paper, the allele frequency used for prediction was the 
same as that for simulation of the data. Likewise, there 
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was no recombination between the marker and the QTL 
in either the prediction or the simulation. This is unlike- 
ly to be the case and any recombination will reduce the 
power. In both of these cases predictions could be made 
under a range of values for the relevant parameters. 
Soller and Genizi (1978) discuss the effect of the QTL 
allele frequency and recombination on the power. 

For ease and speed of computation, power was pre- 
dicted from the F ratio using the simple formula for a 
balanced random model. In an unbalanced situation (as 
used here for the IC situation) this no longer holds, but 
an approximation using the central F distribution can 
be obtained (Scheff6 1959, p. 254). For a fixed-effects 
model the F ratio under the alternative hypothesis is 
distributed as a non-central F distribution. Estimates of 
power for given degrees of freedom, significance level, 
and a non-centrality parameter, have been calculated 
(for example Pearson and Hartley 1954). Alternatively 
Scheff~ (1959, p. 414) gives a central approximation to 
the non-central F distribution. In the mixed model used 
here, however, the expected 'within-marker within- 
family' mean square is not a central chi-square variable 
and hence the F ratio obtained will not be distributed as 
a non-central F. Genizi and Soller (1979) derive a for- 
mula to approximate power for this type of mixed model 
using a Laguerre series expansion. The approach used 
here, following the equations for balanced random 
models, is much easier to calculate and, despite being 
formally inappropriate, gave predicted powers close to 
those observed for the same F ratio in the situations 
examined. 

Soller and Genizi (1978) present the numbers of 
individuals required to obtain 90% power in given 
situations. The test statistics, although not derived in 
their paper, appear to be consistent with those derived 
here using a mixed rather than random model. This is 
supported by my simulations of the marker and the 
QTL situations which they explore (data not shown). 
Soller and Genizi suggest the omission from the IC 
families of the offspring that are heterozygous at the 
marker locus, and compare this situation with BC 
marker families. In both cases the F ratio is written in 
terms of the within-family QTL variance that is ex- 
plained by the markers as a proportion of the residual 
variance. They suggest that this proportion in the IC is 
twice that in the BC, giving F ratios of 1 + n~2/8r7 2 and 

1 + n~2/4~ 2 for the BC and IC (omitting heterozygotes), 
respectively. This is approximate for the BC families 
(compare with the ratio given in this paper), but will hold 
for most situations in practice, where the effect of the 
QTL is small compared with the residual variance. 

Using the same families but omitting the hetero- 
zygous offspring in the IC situation increases the 
predicted power, despite the loss in degrees of freedom, 
as it increases the difference between the marker geno- 
types and reduces the residual variance. For the popula- 
tions considered in Table 2, the predicted power for 
these families would be 44% and 63 % which is similar to 
that obtained for the BC families. For a range of par- 
ameter values investigated, omitting the heterozygous 
offspring resulted in greater predicted power (data not 
shown). 

Although prediction of power in more general 
models, with multiple marker alleles, recombination 
between the QTL and marker etc., requires tedious 
algebra, the implementation of analysis of variance with 
real or simulated data is relatively simple. Hence analy- 
sis of variance provides a useful tool to enable quick 
screening of a population preliminary to the use of 
computationally-demanding methods such as maxi- 
mum likelihood. Maximum likelihood may, however, 
provide more power as well as a better framework for 
the estimation of QTL effects. 
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